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EQUIVALENCE UNDER TIME CHANGES 

BY 
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This paper is dedicated to the memory of Shlorao Horowitz 

ABSTRACT 

It is shown that Markov processes traverse meir trajectories in just one way, and 
applications are given to the Blumenthal, Getoor and McKean theorem. 

§1. Introduction 

There  are two main results we wish to state which are proved in part  in the 

present  paper  and in full in forthcoming paperL The first is that whenever  a 

particle which is undergoing motion governed by a strong Markov process with 

stationary transition probabilities and without holding points traces out a fixed 

trajectory segment, it mu,st trace it out in a fixed length of t ime depending only 

on the transition probabilities and on the trajectory segment. This theorem has 

as an immediate  corollary the fact that a continuous Markov process on the real 

line which always moves in the same direction must do so deterministically. The  

second main result, an application of the first, is that if two processes have the 

same hitting probabilities and the second is a strong Markov process with 

stationary transition probabilities, then the first can be t ransformed into the 

second by a non-anticipating change of the time scale, without having to enlarge 

the ~r-fields. This is a sharpening (in the case that the second process is Markov)  

of the result given in [2] for two arbitrary processes with no holding points. 

As is customary in probability theory, path denotes a function of t ime having 

values in the state space and tra/ectory denotes the ordered set of points 

traversed by the path, so that, for example,  if to is fixed, X,(~o) and X,,(¢o) are 

different paths traversing the same trajectory. 
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To carry out the proof of the first result, let ~'~ _-< ~2 be two stopping times, with 

z2 defined by the post-z1 behavior of the process. First, the paths of the Markov 

process are grouped into equivalence classes consisting of those paths which 

traverse the same trajectory segment as t ranges throughout the interval [z~, z2). 

The probability measure of the process is then disintegrated with respect to these 

equivalence classes. Next, it is shown that the time of traversal of the segment is, 

for almost all trajectory segments, a constant depending on the trajectory 

segment and the transition probabilities of the process. This dependence is such 

that the traversal time of trajectory segments is consistent in the sense that if a 

segment is the union of other segments, then its traversal time is the sum of the 

traversal times of its components.  That the traversal time of a segment is 

constant is proved by first showing that it can be written as the sum of an 

arbitrarily large number of random variables, which, relative to the conditional 

measure on the trajectory segment, are not only independent but on {~'2 < 00} are 

subject to the normality convergence criterion for triangular arrays, and is 

therefore normal. Since the traversal time must be non-negative, its normal 

distribution must degenerate at a constant. The idea of the proof that the 

traversal time is the sum of independent random variables is contained in the 

following observations. Let 0-~ be the first exit time from a ball of radius 1 

centered at the location of the process at time 0, and let o-2 be the first exit time 

after o-~ from a ball of radius 1 centered at the location of the process at time 0"1. 

The paths are grouped into equivalence classes indexed by the three coordinates 

~: = (X1, X2, X3), where X1 is the location of the path at time 0, X2 the location of 

the path at time o"~ and X3 the location of the path at time o-2, and then the 

measure P on path space is disintegrated with respect to the equivalence classes. 

The Markov property as usually stated would give the conditional independence 

of o-~ and o-2- 0"~ given X2, but what is needed to give the independence of o"1 

and o-2 - o-~ with respect to Pe for almost all ~: is the conditional independence of 

o-~ and o-2 - o"~ given ~: = (X~, X2, X3). This follows from the first part on applying 

the lemma that if M and ~ are conditionally independent given ~, and if Mo C M, 

~ o C ~ ,  ~oC ~ then ~' is conditionally independent of ~ v c¢0 given 

A0 v ~3oV ~¢. 

The second main result can be given in stronger form when both processes are 

strong Markov with stationary transition probability functions. It can be shown 

in that case that the time change satisfies a functional equation from which it 

follows that the transformed process is Markov with respect to the transformed 

o"-fields, a minor strengthening of the Blumenthal, Getoor  and McKean 

theorem. 
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If the condition that there are no holding points is removed, then it can be 

shown that the first result still holds when properly modified. The modification 

takes into account the fact that for each holding point of the Markov process 

there is a parameter,  depending only on the point, such that when the process 

reaches the point, it holds for an exponential holding time with that parameter.  

The process thus has more than one sample path in each trajectory segment 

having holding points. When restricted to a trajectory, the process will move 

deterministically when it moves, and will hold exponentially at holding points. 

The first result thus modified is what is needed to yield the Blumenthal, Getoor  

and McKean theorem directly. 

The present paper contains a proof of the partial result that if paths tracing out 

the same full trajectory are grouped into equivalence classes, and if the measure 

is disintegrated with respect to these equivalence classes, then the disintegrated 

measure is concentrated on a single path per trajectory. This holds if both 

processes are strong Markov processes with stationary transition probabilities, 

and there are holding points. This result is then applied to yield the second main 

result in the case that there are no holding points as well as the Blumenthal, 

Getoor  and McKean theorem in that case. 

§2. Notation and preliminaries 

Let (S, d) be a locally compact, separable metric space (S is then o--compact, 

that is, S is a countable union of compact subsets). We denote by E the o--field 

generated by the open subsets of S. Let D be the set of all S-valued functions on 

[0, oo) which are everywhere continuous from the right with limits (in S) from the 

left. There is a metric on D relative to which D is a complete separable metric 

space. Let ~ be the o--field over D generated by the corresponding open sets. It 

turns out that ~ is also the o--field generated by the maps f ~ f(t) as t varies 

over [0, oo). For each s => 0, let ~s be the sub-o--field of ~ generated by the maps 

f---~f(t), t E [0, s] and f EE D. Let @s+ = n, se, We adjoin to S a non-member 

A as an isolated point, and set f(oo) = A for each f E D. A map p of D into the 

extended reals is called a path-defined stopping time if {f : p(f)  --< s} E ~ for 

each s_-> 0. We write f(p) for f(p(f)). The o--field generated by the maps 

f--*f(p + t) as t ranges over [0, oo) is denoted by ~ .  

We say that X = (l~, M, alL, X,, P)  is a stochastic process if (f~, M, P)  is a 

probability space, {d~,} is an increasing system of sub-o--fields of M, and, for each 

t _---0, X, is an ~ , -measurable  map on f~ into S. The o--fields {d/,} are called 

right-continuous if, for each t => 0, A/t, = ./~,+ = ns>, s The sample path X(to) 
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of an to E 11 is the map of [0, ~) into S whose value at t -> 0 is X, (to). Throughout  

the rest of this paper we consider only processes whose o--fields {d,t,} are right 

continuous and whose sample paths belong to D. We abuse notation by using X 

to denote not only the process but the map of 11 into D given by to ~ X ( o ) .  We 

shall use 7r to denote the measure on @ defined by 7r(A) = P ( X - I ( A ) ) ,  A ~ 9 :  

that is, 7r = p o X  -~. We call rr the distribution of X. A stopping time for X is a 

map r of 11 into [0, oo] such that, for each s =>0, {r =<s} belongs to the 

P-completion of d,t,. We assume that each of the o--fields A/t, are complete with 

respect to P. If z is a stopping time, then dL is the o'-field of sets A for which 

A M {r =< t} E A/t, for each t => 0, and XT is the function defined on {~- < ~} by 

X, (to) = X,(o)(to). It is easy to see that if each of the tr-fields d,t, is complete with 

respect to P, then so is rid.. The right continuity of the sample paths implies that 

X, is M-measurable: in fact, it is d,t.-measurable. We set X, = A on {~" = oo}. The 

process X is called quasi-left-continuous if, for any stopping time r and any 

stopping times r ,  ~' r (on {r < oo}), we have 32,. ~ X, a.s. on {r < ~}. 

We denote  by ~,+ the sub-or-field of M generated by functions X,+, as t ranges 

over [0, ~). 

2.1. LEMMA. Let ~" be a stopping time, and U an open subset of S. Let 

3' = inf{t : t >= O, X,+, E U}. Then y and X,+, are ~+<measurable. 

PROOF. Because X, is right continuous in t, {3~ < s} is the union of the sets 

{X,+, E U} as r ranges over the non-negative rationals less than s. But each of 

these sets is in .~,+, so 1' is ~,*-measurable. If U is open, 

{ X , . , E U }  = U 1") y {X, .ck . l ) / ,~U,  k < r < k + l }  
n r n = n  m m 

Since each set on the right belongs to J:~, so does the set on the left. If follows 

that X,+, is ~,+-measurable. 

In [2], ~- + T is called the first post-y hitting time for U, and is shown to be a 

hitting time for X. The proof of the lemma also establishes the analogue of 

Lemma 2.1 for path-defined stopping times p, with ~ in place of ~-.+. 

A continuous time change for X is a family {~-,, t _-> 0} of stopping times such 

that, for P-almost all to, r,(to) is a continuous, strictly increasing function of t 

with Zo(to) = 0. It is not hard to show that if the fields {~,} are right continuous, 

so are the fields {./g.,}. 

2.2. DEFINITION. The process X = (11, M, d/t,, X,, P)  is called a Markov process 

if, for every stopping time r, E E Z, and t =>_ 0, 
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(2.1) 

P-a.s. on {I-< oo}. 

A PROPERTY OF MARKOV PROCESSES 

P(X~+, E E  t ~ , )  = P(X.+, E E IX~) 
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2.3. LEMMA. Suppose X = (1-1, M, d~,, X,, P) is a Markov process, and that z is 

a stopping time for X. Then, if Y is a non- negative ~;+.- measurable function on l'l, 

(2.2) E ( Y  I ~I~) = E ( Y  t X . )  

P-a.s. on {r <oo}. 

PROOF. It suffices to establish (2.2) for Y = f,(X.+,,) . . . . .  fn (X~+,.) where n 

is a positive integer, 0 =  < h < - - . < t . ,  and f l , ' " , f ,  are non-negative E- 

measurable functions on S. We do this by induction on n. For n = 1, it follows 

from (2.1) for f = In, and then for non-negative f by the usual sort of argument. 

Suppose (2.2) holds for such Y's for all stopping times r provided n = 

1,-- ", m - 1. Let Y = (J:,(X.+,,))Z, where Z = f2(X~+~) . . . . .  f .  (X.+,.). Then, by 

virtue of the induction hypothesis and well-known properties of conditional 

E ( Y  I d~ ) = E ( E ( Y I d L + , , ) I d L )  

= Z if(X,÷,,)E (Z I ~,+,,) I ~ )  

= E(f (X.+, , )E(Z I X.÷, , ) I~ . )  

= E(f(X.+tl)E(Z I X.+',)t X~) 

= E(~(X~÷,,)E(Z I .~.+,,) I X.) 

= E ( E ( Y I ~ . ÷ , , ) I X . )  

= E ( r l X . ) .  

expectation, 

This establishes (2.2) for Y's of the sort specified for all positive integers up to 

and including m, and so proves the theorem by induction. 

2.4. COROLLARY. Suppose that X is a Markov process, and r a stopping time 

for X. Suppose that y is a ~+~-measurable function on f~ to [0, oo]. Then, for each 

E E E ,  

(2.3) P(X,+, E E I ~ )  = P(X~+~ E E IX,) 

P-a.s. on {z + y < ~}. 

PROOF. Let y . = k + l / 2 "  on { k / 2 " < y < = k + l / 2 " } .  Since these sets, on 
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which y, is constant, belong to ,~,+, it is clear that X~+~. is measurable with 

respect to o~ +. Now let n--+ o0. Then 

~ f f ( x . ~ . )  / At,) = Eff(x.,.)lxa 
by virtue of Lemma 2.3. Now let n---~oo. Then r +  y, ~, r + y, whence 

X~.~. --* X.+, by virtue of the right continuity of the process. It follows that X,+v 
is measurable with respect to o%~ +. The same is true of I~ (X.+~), and now (2.3) is 

an immediate consequence of Lemma 2.3. 

If X = (1"}, ag, At,, X,, P)  is a stochastic processes, with paths in D as we assume 

throughout,  so is (D,~,~¢,rl, ,zr),  where zr = P o X  -1 and rl , ( f )=f( t  ) for all 

f E D and t _-> O. This latter process is called the path-spaceprocess induced by X. 
Since we are assuming that the tr-fields {At,} are right continuous, an easy 

argument shows that, if X is Markov, so is the path-space process induced by it. 

Let (~, ~, P)  be a probability space, with M, ~,  and ~ sub-tr-fields of o ~. Then 

ag and ~ are said to be conditionally independent given ~g (or ag ± ~ given ~ )  if 

P(AB I~)= P(A I~)P(B I~) for each A ~ M and B E ~.  An equivalent 

condition is that P(A I~a v ~)= P(A I~) for each a E M. 

2.5. LEMMA. Suppose M and ~ are conditionally independent given qg. The 

following then hold. 
(a) If  ago C ag and ~ao C ~a, then ag and ~ are conditionally independent given 

agoV ~ 0 v  cg. 

(b) I[ ~go C (6, then ag "is conditionally independent of ~ v ~o given <g. 

PRoof. Under  the assumptions of part (a), for A @ ag, e(Al~a v ~ ) =  

£ ( A  I *) .  Since ~ v cg D ~o v cg D c6, this implies that P(A I~ v ~) = 
P(A [~ao v (6). But 93 v c@ = ~ v (~o v %o), so P(A i g3 v (~o v cg)) = 
P(A [ ~o v ~).  Thus ag % ~  given ~o v cg. Applying the same argument again, 

but reversing the roles of M and ~,  we obtain ag _1_ ~ given ago v ~o v c6. This 

proves (a). Assume the hypotheses of (b). It suffices to show that P(ABC[  qg) = 

P(A I ~ )P(BCI  qg) for each A E ag, B ~ ~,  and C @ cg0. But then 

Thus (b) holds. 

2.6. THEOREM. Suppose that X = (12, ag, At,, X,, P) is a Markov process, and 

that r is a stopping time [or X. Then At, and ~': are conditionally independent 

given X,. 

P~oo~. Suppose Y is ~,+-measurable. We want to show that 
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(2.4) E ( Y t . ~ f ~ ) = E ( Y ] X ~  ) P-a.s.  

This holds on {z < oo} by vir tue of L e m m a  2.3. Since {~- = ~} = {X~ = 4}, {r = oo} 

is XT-measurable.  Also  X,÷, = X~ = A for  all t on {7- = oo}, so Y is constant  on 

{~- = oo}. Thus  (2.4) holds on {~" = oo} as well. 

If X is Markov ,  so is the path space process induced by X. Therefore ,  if p is a 

path-def ined s topping time, 9p 3_ 9 ~  given f(p) (relative to the measure  7r on 

9). 

2.7. DEFINITION. The  Markov  process X = (~1, ~ ,  ~, ,  X,, P )  is said to have 

stationary transition probabilities if there is for each t => 0, x E S, and E @ 5,, a 

number  P,(x, E) satisfying the following condit ions:  

1. for each t and x, P , (x , . )  is a probabil i ty measure  on 5,, 

2. for each t and E, P , ( . ,  E )  is E-measurable ,  

3. for each x and E, P,(x, E )  is Borel  measurable  in t, 

4. Ps+,(x,E) = f Ps(x, dy)P,(y,E), 
5. P(XT+, @ E ! JL) = P, (X,, E) P-a.s.  on {r < oo} if r is any s topping time for 

X. 

Then  the system {P, (x, E ) ,  t => 0, x E S, E E 5,} is called a transition probability 
function for X. 

We emphas ize  that th roughout  this paper  we consider  only processes with 

infinite lifetimes. 

Suppose X = (12, ~l, ~,, X,, P) is a Markov  process with transition probabil i ty 

function {P,(x,E)}. Then  the path space process (D, 9 ,  9,*, 7/,, ~-) is  a Markov  

process with {P,(x, E)} as its transition probabil i ty function. The  distribution 

7r = P o X ' can be defined in the following way. Let IX be the distribution of 

Xo: Ix(E) = P(Xo@ E), E @ ~. Then 7r is the measure  P ,  on ~ for which 

(2.5) P,, ({f : f(0) (~ Eo, f( / l )  E E l , " ' ,  [(t,) C E, }) = 

leo Ix(dxo) P,,(Xo, dx,) P,~-,,(x,,dx2)"" 

fz._, P'° ~- .... (x.-2, dx._~)P, . . . . . .  E. a A b  

for each 0 < t~ < • • • < t. < ~¢ and Eo, E~, • • •, E .  in E. The  measure  P~ defined 

on 9 by (2.5) is said to be de te rmined  by the initial measure  Ix. It looks as if for 

any probabil i ty measure  IX, the equat ions  (2.5) define a measure  P,. on (D, 9 ) .  

What  we have assumed so far, however ,  does not guaran tee  the existence of such 

a measure.  If, however ,  we replace (D, 9 )  by (S~,5`~), where S ~ is the product  
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space S t°'~ and X ~ the coordinate o'-field over X ~, then Kolmogorov's consis- 

tency theorem applies to yield a measure P~ on (S ®, X ~) for which (2.5) holds 

(see, for example, [1], p. 17). Assume this has been done. For each x, let Px = P~, 

where Iz = 8x. Now, i f /z  is the initial measure corresponding to ,r, P~ assigns 

outer measure 1 to D, and so we can define P~ on (D, 9 )  (obtaining ,r). Our 

assumptions, however, do not imply that the various Px's assign outer measure 1 

to D. Suppose, however, that they do, and that accordingly each Px defines a 

probability measure on (D, ~) .  Let 0, be the shift on D defined by O,f(s)= 
f ( s  + t) for s and t in [0, oo). Then (D, 9, @,, 7/,, 0,, P.) defines a Markov process in 

the sense of Blumenthal and Getoor. However, this Markov process need not 

have the regularity properties possessed by the original process X, which we 

require for a complete proof of the main theorem. (For example, the process 

need not be strong Markov, and replacement of ~, by 9,+ may destroy the 

Markov property.) It turns out to be necessary for some purposes to assume 

something even stronger, namely that (D, 9,  ~,+, "0,, 0,, P,)  be a standard process 

in the sense of Blumenthal and Getoor ([1], p. 45). If this holds, we say that X 

has a transition function which induces a standard process on D. 

2.8. THEOREM (Dynkin). Suppose (II, M, d~,, X,, 0,, Px ) is a standard Markov 

process (in the sense of Blumenthal and Getoor) with a transition function 

{P, (x, E)} which induces a standard process on D. Let f be a bounded continuous 

real-valued function on S. Then, for each t >= O, (P, f ) (X, )  is P~-almost surely right 

continuous in s. 

PROOF. This is an immediate consequence of theorem 4.10 and 4.11 on page 

125 of [4l. 
We next state for reference and prove two facts about S-valued functions. 

2.9. PROPOSITION. Let I = [a, b ] be a finite closed subinterval of [0, oo), and f a 

function on I into S which is right continuous on [a, b] and has left limits 

throughout (a,b]. Let 6 > 0 ,  and e,, J,O. Suppose that, for each m = 1 , 2 , . . . ,  

there is a t,, with ft,,, tm+ 6] C I for which d (f(t) ,  f(t.,))<- e,, for all t E [tm, t,, + 6]. 

Then there is a subinterval of I on which f is constant. 

PROOF. Assume the hypotheses. There is a subsequence of {t,,} converging to 

some to for which [to, to+ 6] C L We may assume without loss of generality that 

t,, ~ to, in fact, that either t,, 1' to or tm ,~ to. Suppose tm $ to. Let t E (to, to + 6). 

For sufficiently large m, to = t,, < t < t,, + & We have 

d (f(t), f(to)) <- d if(to), f(tm )) + d (f(t~), f ( t)) .  
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As m-->0% d(f(to),f(t,.))---~O by right continuity, while d(f( tm), f ( t ) )  < e~ < 0 .  

Thus d(f(t) , f( to))  = 0, so f ( t )  = f(to). This shows that f is constant on [to, to+ 8). 

Suppose that t,, 1' to. Let t E (to, to + 8/2). For sufficiently large m, t,~ _-< to < t < 

to + & and 

d (f(t),  f(to)) <- d (J:(tm), f(to)) + d (f(t,,), f( t)) .  

Since both d(f(tm),f(to)) <-em and d( f ( t , , ) , f ( t ) )  <- era, we again conclude that 

f ( t )  = f(to). This shows that f is constant on [to, to + 8/2), completing the proof. 

2.10. PROPOSITION. Suppose f and g are right continuous S-valued functions 

on [0, oo) without intervals of constancy. Suppose tr~ and tr2 are continuous, strictly 

increasing maps of [0, oo) onto itself for which f o o'~ = f o tr2 = g. Then trl = at2. 

PROOF. Assume the hypotheses. Then f o o-1 otr~ 1= f, and tr = trl o t r i  I is a 

strictly increasing map of [0, oo) onto itself. We must show that tr is the identity 

map. Suppose not. Then there is an s E [0, o0) for which tr(s) / s. Either  tr(s) < s 

or t r ( s ) > s .  Suppose c r ( s ) < s .  Let t U(o'(s) ,s) .  We have t r " + l ( s ) < o ' " ( t ) <  

trn(s), where tr" denotes the nth iterate of tr. If u = limntr"(s),  then u = 

lim, trn(t). By right continuity, and f o or = f, f ( u )  = f ( s )  and f ( u )  = f( t) .  Thus f 

is constant on (tr(s), s), contradicting the assumption that it has no interval of 

constancy. Since tr(s) < s leads to a contradiction, we must have tr(s) > s. But 

then s > o'-~(s); since f o o --1 = f, this also leads to a contradiction. Therefore  

tr(s) = s, completing the proof of (b). 

In [2], we state a theorem on the disintegration of measures.  We restate it here 

in the form in which we use it. First, suppose that (D, 9,  ~r) is a probabili ty space. 

Let ~ be a countably generated sub-o-field of 9.  The fibers of ~ are then 

g '-measurable.  Let o~ be the class of all fibers of ~. There  is an obvious 

correspondence between the o--field of all subsets of ~: whose unions are 

members  of ~ and the sub-it-field of ~ consisting of such unions. (Note that 

is contained in said sub-o'-field.) This correspondence takes the restriction of 7r 

to that subfield into a measure on the o'-field of subsets of ,~ to which the 

subfield of ~ corresponds. We denote the measure by 7r, thus at the same time 

conserving and abusing notation. 

2.11. THEOREM (Disintegration of measures). Let D be a complete separable 

metric space, with ~ its class of Borel sets. Suppose that zr is a probability measure 

on ~, and that ~ is a countably generated sub-it-field of ~, with J; its class of 

fibers. Then there is a family {~e}e~ of measures on @ satisfying the following 

co,~ditions (~(x) denotes the member of ~ to which x belongs): 
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and 

(i) for each A ~ 9,  ¢ret~)(A ) is an ~-measurable function of x, 

(ii) for each A E ~ and E E if, 

7r(A nE)= f~ 7re(A)Tr(d~), 

(iii) for ¢;-almost all ~ E ~, 7re is a probability measure with 7re (~) = 1. 

I f  Z is a bounded ~-measurable real-valued function on D, then x --* f Zdzre<~> 

is an if-measurable version of E~ ( Z  [ if). 

2.12. COROLLARY. Let Z be a bounded ~-measurable real-valued function on 

D, and if a countably generated sub-it-field of  ~. Then Z is ¢r-a.s. if-measurable 

if and only if Z is 7r~-almost surely constant on 7r-almost all fibers of if. 

PROOF. Suppose Z is or-almost surely equal to an if-measurable function Y. 

Then Y is constant on fibers of ~. Since A = [ Y #  Z]  is ~-measurable and 

or-null, its intersection with 7r-almost all fibers ~ of ~ has ~re-measure 0, for 

0 = 7r(A) = f ere (A)cr(d~) = f 7r e ( A n  ~)Tr(d//). But if ~: c a c, Z on ~ is equal 

to the constant value of Y on ~. 

Suppose that Z is ere-almost surely constant on 7r-almost all fibers of ~. Of 

these fibers those for which 7re is a probability measure concentrating on ~: have 

the property that f ZdTre is the ~re-a.s. constant value of Z on ~. Therefore, for 

or-almost all ~, Z = f Zdz,, on ~. Since the function equal to f ZdTre on ~ is 
if-measurable by (i), Z is 7r-a.s. if-measurable. This completes the proof of the 

corollary. 

We shall also use the fact that, under the hypotheses of the corollary, Z is 

~-measurable if and only if it is constant on fibers of ~. This follows easily from 

the case where Z is the indicator of an M-measurable set, which in turn follows 

from Blackwell 's  Theorem, stated on page 38 of [6]. 

Suppose that {¢re}e~ is a disintegration of measures with respect to if, and 

that the countably generated q-fields ~t and fll are conditionally independent 

(relative to 7r) given if. Then, for 7r-almost all ~ E 3~, A and ~ are independent 

relative to 7r~. This is an almost immediate consequence of the fact that for any 

C ~ ~, 7re(~)(C), as a function of x, is a version of the conditional probability 

7r(  l if)- 
Suppose that (D,~,~,.,~7,,O,,P~) is a Markov process in the sense of 

Blumenthal and Getoor, which is normal in their sense ([1], page 30), that is, 

P, (r/o = x) for all x E S. Let if be a countably generated sub-q-field of ~, with 

its class of fibers. Then, for each x U S, there is a disintegration {P~,e}e~ of the 
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measure Px. We shall require the fact that it is possible to arrange things so that 

Px , , (A)  is jointly measurable in (x, ~:) for each A E ~. 

2.13. PROPOSmON. Suppose that (D, ~,  ~,+, 71~, 0,, Px ) is a Markov process in 

the sense of Blumenthal  and Getoor. Let  ~g be a countably generated sub-tr-lield of 

9 ,  and ~; the class of  ]ibres of  ~g. Then there is a system {P,~, (A)}, with x ranging 

over S, ~ over J;, and A over ~ such that, for each x E S, {P,.~},~ is a 

disintegration of P, relative to ~g, and, J:or each A E ~, P ,~ , (A)  is ~ x ~g- 

measurable in (x, ~). 

PROOF. This proposition is an immediate consequence of a result on the 

existence of simultaneous disintegrations of measures depending measurably on 

a parameter.  This result was first shown to us by Neil Falkner, who later 

observed that it is stated on page 90 of [7]. 

§3. The times p.k, and some sub-fields of 

For each path-defined stopping time p on D and r > 0 ,  let T ( p , r , f ) =  

inf{t : t >= p( f ) ,  d f f ( t ) , f ( p ) )  > r}. T(p, r) = T(p, r,. ) is a path-defined stopping 

time. We define ~- to be the smallest class of path-defined stopping times with 

the following two properties: 

(i) 0 E 3-, 
(ii) if p ~ 3-, and r is a rational in (0, 1], then T(p, r) E 3.  

Clearly, J- is countable. We define Do to be the set of all f ~ ~ for which 

T ( p , r , f ) =  lim, T ( p , r - ( 1 / n ) , f )  for all p E ft. It is clear that D o E  ~. 

3.1. LEMmA. I f  X = ([I, M, ;bt,, X,, P ) is a quasi-left-continuous process, then 

It(Do) = 1. 

PROOF. It suffices to show that if p is a path-defined stopping time r > 0, and 

X is qlc, then T(p, r) = lim, T(p, r - ( l /n))  ~r-a.s. Clearly T(p, r - 1/n) <-_ T(p, r), 

and T(p, r - 1/n) increases with n. Let T~ = lim, T(p, r - I /n) :  then T®<= T(p, r). 

If f E D, and p(f )  < o0, d( f (T (p ,  r - l /n)) ,  f (p ) )  >- r - 1/n by virtue of the right 

continuity of [. By virtue of quasi-left-continuity, [(T(p ,  r - I/n))---> f(T®) zr-a.s., 

whence d( f (T~) , f (p) )>=r rr-a.s, on {T®<oo}. Thus T(p,r)<=T~ 7r-a.s., so 

T(p, t ) =  T~ 7r-a.s., proving the lemma. 

Let e, = 1/2", n = 1 , 2 , . . . .  For each such n, the sequence {p,k}~=0 is defined 

inductively by 

(i) p.o = o, 

(ii) p~ k+, = T(p.k, e.) .  
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Clearly {p,k : n = 1 , 2 , . . . ,  k = 0 , 1 , . . . } C  J-. For each n, let k, = sup{k :p.k < 

oo}. If f ~ D, and k, (f) < 0% then p.k (f) < oo for k _-< k., while p,k (f) = oo for 

k > k. ; if k. (f) = 0% p.k (f) < oo for each k. We list some properties of the p,~, 's in 

the following lemma. 

3.2. LEMMA. Suppose f ~ D. Then the following hold: 
r l k . f f )  

(a) Ip,klk=l is strictly increasing, 

(b) if n > m, and p.,k+l(f) < 0% then there is at most one value of i f  or which 

(f)  < p.., (f)  < p..k+lq), 
(c) {p.k (f)}~=l has no finite limit points, 
(d) if f has no intervals of constancy, {p,k (f) : n = 1, 2 , . . . ,  k = 0, 1 , . . .  } is 

dense in [0, oo). 

PROOF. Property (a) is obvious. Property (b) is a consequence of the 

definitions of e,, p,k, and the triangle inequality. Because f is right continuous, 

d(f(p.k),f(p,~k÷O) >- e. if p..k-~(f) < o~, 

and since f has right and left limits everywhere, (c) follows. Suppose there is no 

p.k(f) in (a,b). Let l .=sup{l:p.~(f)<=a}.  Then d ( f ( t ) , f ( p ~ . ) ) < e ,  for 

t E (a, b), and it follows that d(f(s),  f(t)) < 2e, for each s, t in (a, b). If this holds 

for each n, f must be constant on (a, b). This proves (d). 

Let 6 be the sub-o-field of ~ generated by the maps f---~f(p), p E gr. Then ~7 

is countably generated. If f and g are in the same fiber of 6, we write f - = g  

(mod 6). Clearly f --- g (mod ~?) iff f(p(f))  = g(p(g)) for each p E 5 r. 

3.3. LEMMA. Suppose f and g are members of Do, that neither has an interval 

of constancy, and that f =- g(mod 6). Suppose m < n, and that p,~k+,(f) < o~. Then 

p . k ( f )<p , . , ( f )<p~+, ( f )  if and only if p .k(g)<p. . , (g)<p,~+,(g) .  

PROOF. Assume the hypotheses of the lemma. Because of Lemma 3.2(b) it is 

enough to prove the following: if there is no i for which p .k( f )<  p,.~(f)< 

p,~k+,(f), then there is no i for which p.k(g)<p,.,(g)<p..~+~(g). An easy 

inductive argument shows that this in turn is demonstrated if we can show the 

following. Suppose that i is the largest index for which p,., (f) - p.k (() and also 

the largest index for which p,., (g) _-< p.k (g). Then p,.,,+l(f) > p.,k+,(.f) implies that 

p,.,,+l(g) > p..k+,(g). Assume, then, that i is the largest index for which p,., (f) _-< 

p.k(f) and the largest index for which p,,, (g ) _-< p,~ (g ), and that p,,,,+,(f)> 

p,.k+l(f). Let V be the open sphere of radius e,, and center x,.~ = 

f(pm~)(= g(p,.~)). The f-image of [p,k (f), p,.k+l(f)] is contained in V. In fact, 

(a) d(f[p.k (f), p,~ k÷,(f)], V c) > 0. 
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To prove (a), suppose it does not hold. Then there are points {t~}C 

[P,~(f),p,~k+~(f)] with d(f(t~),V')---~O as l--~oo. Since [ p ~ f f ) , p ~ + , ( f ) ] C  

[P,,,(f),p,~k+~(f)], this clearly implies that for each j, T(p.,,,er.-(1/j),f) < - 
p~k.~(f). But rEDo,  so 

T(pm,,e..-(1/j),f)-*T(p.., ,e,. ,f) as j - - ~ ,  

yielding pm.,+l(f)= T(p,,,, era, f)--< p,~k*,(f), contrary to assumption. 

Let xnk = f(pnk)(= g(p~)) .  For each r =>0, let T0(r)= pnk, T~(r)= 
T(To(r) , r) ,  • • •. Call ti(r)= T~(r,f) an r-time for f, and/~(r)  = T~(r,g) an r-time 
for g, i = 0 , 1 , . ' . .  Let y,(r)  = f(t~(r)) ( =  g(~(r)) ,  i = 0, 1 , . . . .  The following is 

an easy consequence of the definitions involved. 

(b) tN(r) is the largest r-time for f less than p.~k.l(f) iff d(y,(r),x~k)< e., 
i =  1 , . - . , N  and d(y~,.~(r),x~k)>= e.. 

It follows from (b) that if tN(r) is the largest r-time for f less than p,,~.~(f), 

then iN(r) is the largest r-time for g less than p,,k÷l(g). 

Let d(f[p.k (f), p,~k÷~(f)], V ~) > 8 > 0, and r a rational, 0 < r < & For each 

i =  1 , . . . , N ,  let W~ be the sphere of radius r and center y~(r). Let W =  

W 1 U . - .  U WN. It is easy to see that W covers both the f- image of [to(r), tN(r)] 

and the g-image of [[o(r),/N (r)]. Since d(W, V ~) > 8, it follows that the g-image 

of [/o(r),/N(r)] is contained in V, whence p~.~.i(f) >- tN(r). Now let r ~, 0 through 

rationals, t~ (t) is the largest r-time for f less than p,, k.,(f), so [~ (r) is the largest 

r-time for g less than p~.k÷~(g). The argument used to establish 3.1(d) shows that 

{t'~(r)} has p,~k+~(g) as a limit point as r--~ 0. It follows that p~.~.t(g)>= p,~k÷~(g). 
If p,,,~÷~(g)= p,~k÷~(g), then 

d(f(p~k.O,x,.,) = d(g(p.,k.O,x,,,) >- e,., 

contradicting the assumption that p,~.,+l(f)>p~+~(f). Therefore  p,,.,+~(g)> 

p~,k+l(g). This completes the proof of the lemma. 

The p,~'s are not constant on fibers of •. The lemma shows, however, that the 

ordering of the p,k (f)'s as n and k vary is fixed by specifying the fiber to which f 

belongs - -  provided we restrict ourselves to functions f which have no intervals 

of constancy, and which also satisfy a somewhat artifical condition whose 

usefulness is a consequence of the quasi-left-continuity of the process. It would 

be of interest to know whether the ordering of the p~k (f)'s is determined by the 

fiber to which f belongs if these conditions are not satisfied, 

Let Dz be the set of all f E Do having no intervals of constancy. We say that 

functions f and g in D differ by a change of variable if there is a continuous, 

strictly increasing map o- of [0, ~) onto itself for which g = f o or. We call such a 
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function o" a change of variable which takes [ into g. Such a change of variable is 

unique by virtue of Proposition 2.10. 

3.4. LEMMA. Suppose f and g differ by a change of variable o-, for which 

g = f o o'. Then, for each n and k, 

(a) p,~ (f) = o-(p~k (g)), 
and 

(b) o'(s + p,k (Osg)) = o'(s) + p., (O~.J), for each s E [0, ~). 

PROOF. We prove (a) for each n by induction on k. For k = O, (a) is obvious. 

Suppose (a) is true as it stands. Then 

cr(p,.k+,(g)) = tr({inf{t : t => p,k (g), d(g(t),  g(p,k))=> e,}) 

= inf{o-(t) : o'(t) >-- tr(p,k (g)), d(f(tr(t)), f(o'(p,k (g)) >= en} 

= inf{s :s => p,~ (f), d(f(s),f(pnk))>= e} 

= p ~ . k . , f f ) ,  

which verifies the induction step. 

We now prove (b). Fix s. L e t / *  and g* be defined by 

f * ( t ) = f ( t + t r ( s ) ) - f ( t r ( s ) ) ,  g * ( t ) = g ( t + s ) - g ( s ) ,  t @ [0, oo). 

Then 
f*(o'(t + s ) -  tr(s)) = f(tr(t  + s ) ) - f (o ' ( s ) )  = g*(t). 

Thus if tr* is defined by tr*(t) = tr(t + s ) -  tr(s), t E [0,oo), o'* is a change of 

variable for which f * o o - * = g * .  It now follows from (a) that p , , ( f* )=  

~r*(p~k (g*)). But f* and g* differ by constants from O,,f and Osg respectively, so 

p~k (O~J) = p~k (f*), and p~k (0sg) = p~k (g *). Therefore 

p°k ( o j )  = ,~*(po~ (0 ,g))  = ~(s  + p~ (o~g ) ) -  ~(s). 

This completes the proof of (b). 

3.5. THEOREM. Suppose that f and g belong to D~. Then f = g(mod ~?) if and 

only if f and g differ by a change of variable. 

PROOF. It is easy to see that if f and g determine the same trajectory, then 

f -= g(mod 6). To prove the converse, begin by assuming that f = g(mod 6). Let 

o-0 = {(p,k (f), p.k (g)): n = 1, 2,. • . ,  k = 0, 1 , . . .  }: that is, o'o(p~k (g)) = p~ (f). 

(1) fro is a function 
This requires that p , , , (g )=p ,~ , (g )~  pm~(f)=p,a(f), which follows from 

Lemma 3.3. 



Vol. 33, 1979 A PROPERTY OF MARKOV PROCESSES 255 

(2) O-o is strictly increasing and unbounded 
This is a consequence  of 3.2(a) and (d). 

(3) cr0 is right continuous on its domain 
For  suppose p.. .k .(g) ~ p~,i(g) as m ---~ oo. We now make  repea ted  use of the 

order ing proper ty  asserted by L e m m a  3.3. First, {p.. ,k.(f)} is non-increasing 

since {p.. ,k.(g)} is. Each  te rm of {p..,km0r)} is bounded  below by p~j(f): let 

a = l immp.. ,k .(f) .  Let  e > 0 .  Because  of the density of the p.~..(f) 's in [0,oo), 

there  is an (no, ko) for  which pl, j ( f )<p.o ,  ko(f)<pl, j ( f )+6 .  Then  p t ~ ( g ) <  

P.o,ko(g), so p . . , k . ( g ) <  P.o,ko(g) for  all sufficiently large values of m. It follows 

that p . . ,k . ( f )  < P.o.ko(f) for  such values of m. The re fo r e  a < p.o, ko0 r) < P~a(f) + 6. 

Since 6 is an arbi t rary positive number ,  a =<p~j(f), so a = p , j ( f ) .  The re fo r e  

p.. ,k.(f)  ~ p~,j(g) implies p . . ,k . ( f )  $ p,,j(f). Since cro is increasing on its domain,  

this suffices to establish its right continuity.  

(4) f otro = g on the domain of  O'o 

For  f(o'o(p.k (g))) = f(p.k (f)) = g(p.k (g)). 
Now extend  cr to all of [0,oo) by right continuity:  o ' ( t ) =  lim.,cr0(p.. ,k.(g)), 

where  t < p . . , k . ( g )  t as m---~oo. The  limit exists and is independen t  of the 

part icular  sequence  {p.m,k.(g)} chosen because of the monotonic i ty  of o'0, so o" is 

well-defined, cr is an extension of or0 because of the right continuity of cro. 

(5) cr is strictly increasing and unbounded 
This follows immediate ly  f rom the corresponding proper t ies  of O'o 

(6) o- is right continuous 
Suppose  {t.} is a strictly decreasing sequence  with limit t. The re  is a sequence  

{(n.,, k,.)} such that (i) P...km(g) is strictly decreasing in m and has limit t as 

m ~ 0% and (ii) I o'(t,.) - p . . .k . i f )[--* 0 as m ~ oo. Then  {o-(t,.)} and {p.. .k.if)} 

have the same limit points. Since the latter sequence  converges  to o-(t), so does 

the former .  

(7) o" is continuous 
Suppose o( t )  - cr(t - 0) > ~ > 0. For  each n, let k. = sup{k : p.k (g)  =< t}. Then  

O'(p..k.(g))<=cr(t)<O'(p.~k.+l(g)), SO O'(p.,k..l(g))--O'(p.~k.(g))>& that is: 

p.,k..1(f) - p..k.(f) > 8. Thus,  for  each n, there  is an interval  I.  containing t with 

]I.  [ > 8 and such that the oscillation of f on I.  is no grea ter  than 2e.. (This last 

fact follows f rom the definition of the p.~'s and the triangle inequali ty.)  Taking a 

subsequence  of n ' s  for  which the endpoints  of I.  converge,  we p roduce  a 

non-degenera te  interval  on which f is constant .  This contradicts  the assumption 
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that f has no intervals of constancy. Thus cr is left-continuous. Since we already 

know that o" is right-continuous, (7) is established. 

(8) /oc t  = g 

This follows from the corresponding property of cro, and the right continuity of 

f and g. 

3.6. LEMMA. Suppose r is a path-defined stopping time relative to {~,*}. Then 
0 ~1((7) is the sub-or-field of ~ generated by the maps f ~ f ( r  + O o 0,) as p ranges 
over 9-, and 6 C_ ~,  v 0~1((7). 

PROOF. If f is replaced by Off, f (o )= f(o(f)) becomes (O,.f)(o(Off))= 
f (z ( f )  + p(O,f)), so the first statement is obvious. Let ~ be the or-field generated 

by sets of the form {r = s} and {p <- r, p <= s, f(p) E E} as s and t range over 

[0, 0o), p over if, and E over X. Then ~ is a countably generated sub-or-field of 

~ , ,  and ~ v 0~1(¢7) is countably generated. Suppose f and g belong to the same 

fiber ~ of ~ v 0;"((7). Since they are in the same fiber of ~, l"(f) = ~'(g), and, for 

each p E gr, Off) =< r(f) if and only if p(g) <- r(g)( = r(f)), and then Off) = o(g) 
and f (p ( f ) )=  g(p(g)). It follows from 3.2(d) that the restrictions of f and g to 

[0, r(f)] coincide. Let p*k(f) = z(f) + p,k (O.f), p*k(g) = z(g) + p,~ (O.g). Since 

~-(f)= r(g),  and since f and g are in the same fiber of 0~1((7), f(o*~(f)) = 

g(p*k(g)) for each (n, k). Let O'o* be the set of all ordered pairs (p*k(f), O:k(g)). 

Then, as in the proof of Theorem 3.5, o-* is a function defined on a dense subset 
of [~-(f), oo) which extends to a strictly increasing, continuous map or* of [r(f) ,  oo) 

onto itself. If we let f* and g* be the restriction to [r(f),oo) of f and g 

respectively, it follows, agair] as in the proof of Theorem 3.5, that f* o or* = g *. If 

we let ~r be the identity map on [0, r(f)), and equal to ~r* on [~-(f),oo), cr is a 

change of variable which takes f into g. If follows from Theorem 3.5 that f and g 

are in the same fiber of (7. Thus every fiber of (7 is a union of ~ .  v 0~((7). 

Blackwell's theorem now implies that (7 C ~ v 0~~((7). 

§4. A fundamental property of Markov processes 

In this section, we assume that X = (~, M, JfL, iX',, P) is a quasi-left-continuous 

Markov process whose sample paths have no interval of constancy, and that ,r is 

its distribution. For each p ~ ~-, we denote by (7p the sub-o'-field of ~ generated 

by the sets {f: 7(f)<_p(f)<oo, f ( y ) E  E} as 3' ranges over ~r and E over X. If 

P = O,-~, Go is denoted by (7=. Suppose f and g are members of D1 belonging to 

the same fiber of 6p. The argument used to prove Lemma 3.3 shows that 

7,(f) <- 72(f) ~ Off) iff y,(g) <- y2(g) <- p(g) for all y, and yz in :3". In other words, 
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the sub-class of 9- consisting of those  3,'s for  which 3'(f)---- P(f), as well as the  

relat ive o rde r  of  their  values  3' (jr), is fixed on fibers of (7p. This  will be  re fe r red  to 

as " t h e  order ing  p r o p e r t y " .  It  holds only with the qualif ication that  f range  over  

m e m b e r s  of  D~, but ,  since ~(D~)  = 1 by vir tue of L e m m a  3.1 and the assumpt ion  

of no intervals  of constancy,  we can and  will a ssume for  the rest of  this section 

that  the  m e m b e r s  of D to which we refer  are in fact m e m b e r s  of  D1. Then  

L e m m a  3.3 (the order ing  p rope r ty  on the fibers of (7) implies that  (7p C (7. Since 

sup{p,,, (f)  : m = 1, 2 , - - . ,  i = 0, 1 , . . .  } = c¢ by 3.2(d), it follows that  ~? = V (7,,,. 

Fix m and i. Let  ,~ be  the  class of all f b e r s  of  (7,, The  subsets  of  ~: whose  

unions  belong to ~ fo rm a tr-field on which 7r induces a measu re  in the obvious  

way, and we abuse  nota t ion  by using ~r to deno te  this measu re  as well. Since (7,,~ 

is countab ly  genera ted ,  there  is a dis integrat ion {~e}e~  of 7r with respect  to (Tm~. 

4.1. TrmOREM. pro, is 7re-almost surely constant on rr-almost all fibers ~ of(7,,,. 

PROOF. For  each n, let k.  = sup{k : p,k = p.,,}, and A.1 = P.1 - p.0 = 

P.1, • • ", A,~k. = p,~k, -- p,~ k.-~. It is a consequence  of the order ing p rope r ty  that  k ,  

is (7,,~-measurable. W e  shall show that  for  7r-almost all fibers ~:, A,1,- • . ,  A,~k, are 
k 

i ndependen t  relat ive to the measu re  7r~ with E~"__~A,~ = P~k, converging Try- 

a lmost  surely to p,,,. T h e  desi red result then follows f rom the central  limit 

t heo rem.  

Fix n and I. Le t  ~ be  the  sub-a - f i e ld  of  ~ g e n e r a t e d  by sets of the  fo rm 

{p., < p  <=p,, , , f (p)EE} as p ranges  over  9- and E over  E. 

(a) (7.,, = (7,,, v 

This follows f rom the decompos i t ion  

{p <=p.,,,f(p)~ E}  = {p < p.,,.f(p)~ E}  U {p., < p <=p.,,, f (p )E  E}. 

(b)  ~ C (7., v ~ p+., 

T o  p rove  (b), it suffices to show that,  for  each p E 9-, p is (7,t v ~ . , - m e a s u r a b l e  

on {p _--> p,~}: that  is, {p -> p.,, p =< s} E (7,, v ~p*.,. T o  see this, obse rve  that  for  

each p E 9- there  is an integer  m, toge the r  with ra t ionals  r~,- • . ,  rm and s topping 

t imes 0 = p 0 = < . . . = < p , , = p  for  which p ,+~=T(t~ , r ,+0,  i = 0 , . - . , m - 1 .  Let  

i* = sup{ / :  0 =< i =< m, p, -< p,t}. No te  that  {p > p,~} = {i* =< m - 1}. W e  cla im that  

p~..~ is (7.~ v ~ - m e a s u r a b l e .  The  order ing  p rope r ty  implies that  i* is (7.t- 

measurab le .  On {i*=< m - 1 } ,  d(f(t) , f(p~.))< r~. for  t E [p,., p.k). But  then 

p~.., = inf{t : t >= p~., d(f(t),f(p~.))>= h.+,} 

= inf{t : t >- p.k, d(f(t),f(p~.)) >- h.+l}. 
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9 +  . Since i* is ¢?,~,-measurable, it now follows easily that p~-+l is ~Tnk V p., 

measurable on {i*<= m - 1 } = { p  >p,~}. The corresponding measurability of 

p i -+2 , ' " ,  and finally of p,, = p now follow easily. 

Since X is Markov, @p.~ 3- @p+~ given f(p,~) (Lemma 2.6). It is clear that 

~,~ C @~.,, so it follows from Lemma 2.5(a) that @p.~ 3- @~.~given f(p,,~) v 6~ = ~7,,~. 

Applying Lemma 2.5(b), we have @p.~ .L @~, v 6,a given ¢?nt. Since ~ C @~ v ¢Tnt, 

Lemma 2.5(a) implies @p., 3_ @ p+~ v ~7,a given ~?.t v ~. But ~Tnt v ~ = ~Y,,,, so we 

have @p.~ 3_ 9 ÷p,~ given ¢7m,. Now fix k. Let CE = {k, = k}. The ordering property 

implies that k, is constant on fibers of ¢?~,~. The conditional independence we 

have just demonstrated implies that, if l < k, the random vectors ( A , I , . . . ,  A,~) 

and (A,,~÷,, • . . ,  A,E) are independent relative to the measure 77E for 77-almost all 

fibers ~ in C~. It follows that, for 77-almost all fibers ~ of ~Y~, {A,~, • • •, A~. k.}~=~ is 

a triangular array of random variables with the members of each row 77~- 
k 

independent.  It is an easy consequence of Proposition 2.11 that XkL~A~, = 

p,,g ~ p~ on Do. Since k, = sup{k : p~k --< pm~}, it follows from the density of the 

p,~ (f) 's in [0, oo), hence in [0, pro, (f)), that X k" k=~A.~ = p,,.k.--'~p,,,~ as n--->oo. Let 

be such a fiber: that is, A,,, • • . ,  A,~. are independent relative to the measure 77~ 

for each n. If we could show that m a x ~  A.~ ~ 0 in 77~-measure as n ---> o~, the 

nomal convergence criterion (stated on page 316 of [5]) would imply that #,~ is 

normally distributed relative to the measure 77o Since p,,~ is non-negative, this is 

only possible if pm~ is degenerate, that is, if it is 77~-a.s. equal to a constant. Thus 

to establish this degeneracy for 77 almost all ~', it suffices to show that 

maxt~k.~ A~, --~ 0 pointwise on Do. (For 77(Do) = 1 by assumption, so 77~ (Do) = 1 

for 77-almost all fibers ~'.) Suppose not. Then there is an f ~  Do and a 

subsequence of n 's  with corresponding j . 's ,  l_-<j. _-<k. such that A,~s.(f) = 

P,~. ( f )  - P,~i.-t([) >= ~ for some ~ > 0. For such an n, the oscillation of f on the 

intervals [P,~s.-l(f),P~,i.(f)) cannot exceed 2e~. Since these intervals are all 

contained in I = [0, pm~ (f)], it follows from Proposition 2.9 that there is a 

subinterval of I on which f is constant. But f ~ Do, so this is a contradiction. So 

max~.:~k A,~ does indeed go to 0 pointwise on Do as n--~ 0% which completes 

the proof of the theorem. 

The set {p~i _-< psi} belongs to (7,,~ by virtue of the ordering property, hence is a 

union of fibers of ~=~. With minor amendments (and more subscripts) the proof 

of the last theorem demonstrates that p~ is ,re-almost surely constant on 

~'-almost all fibers ~ of ~7,~, belonging to {p~i =< pm~}. We state this as a corollary. 

4.2. COROLLARY. Olj is 77~-almost surely constant  on 77-almost all  fibers ~ o f  (Tin, 

contained in {P~i <- P,~}. 
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Since ~7 is a countably generated sub-tr-field of 9 ,  there is a disintegration 

{~ '~}~ of ~r with respect to (7 ( ~  denotes the class of all fibers of (7). This is the 

disintegration implicitly referred to in the following corollary. 

4.3. COROLLARY. For zr-almost all fibers o f f  of(? there is a g ~ ~ such that 7r, 

is the point mass on g, and for which, given p ~ 3", P(f) = P(g) for zr,-almost all f 

in ~. 

PROOF. The argument used in the proof of Theorem 4.1 demonstrates that,  

for any p E if, p is ~¢-almost surely constant on 7r-almost all fibers ~ of ~?p. 

Suppose ~' is a fiber of t~ for which 7r e, is a probability measure and on which 

each p ~ J is ~r~,-essentially constant. Let to be the 7r¢,-almost constant value of 

p on ~'. Since zr v is a non-zero measure, there is at least one g E ~' with p(g) = tp 

for all p E ft. Let h be any member of s ¢' with p(h)  = tp for all p E J-. Recall our 

assumption that g and h belong to D1. Since the tp's are dense in [0, oo), h = g. 

Thus 7rg, concentrates all its mass on g. This completes the proof of the corollary. 

We now consider the case in which X = (f~, M, J,t,, X,  P)  has a transition 

function {P,(x,E)} which induces a standard process on D. Recall that this 

means that, if the Px's are the probability measures on path space constructed via 

P, (x, E )  in the usual way, then Px (D)  = I for all x E S and (D, 9, ~,.,  71,, 0,, P~) is 

a standard Markov process in the sense of Blumenthal and Getoor.  To avoid 

conflicting notation, we denote the measure on @ corresponding to the initial 

measure /z by 7r~ rather than P,  (although we continue to use Px rather than 

"/7"~5 x ) .  

4.4. THEOREM. Suppose that X is a Markov process whose paths have no 

intervals of constancy, and which has a transition function P , (x ,E)  inducing a 

standard process on D. Then there is a G C D such that, for each f E G, there is a 

function 3' (f," ) on [0, oo) onto [0, oo) which is strictly increasing and continuous, 

and which satisfies the following properties for any initial measure tz. (We denote 

~r, by rr, and 3,(., s) by 3,-) 

(1) G is a union of fibers of 6 with G E @ and ,r(G) = 1. 

(2) For each s and t, {3,, <= s} belongs to the re-completion of @,~. 

(3) For each s and t, 

(4.1) 3,, +, - "y, = 3,, o 0~, 

~r-almost surely. 

(4) Let {rre}~, be a disintegration of zr relative to 6. Then for 7r-almost all fibers 

of 6, there is a g E ~ for which zr~ = 8 s and f o 3,(f, . ) = g for each f ~ l~. 
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PROOF. We apply Proposition 2.13, with the sub-o--field ~' referred to in its 

statement equal to 6, to obtain a system {Px.e(A)} of set functions for which 

{ P ~ } ~  is, for fixed x, a disintegration of P, with respect to t~ (here ~ is the 

class of fibers of 6),  with the property that for each ~t E 9,  Px.~(A) is jointly 

measurable in (x, ~). Since pl.o = 0, f(0) is an tT-measurable function of f. If s c is a 

fiber of (7, the value of f(0) common to all f E s ¢ is denoted by ~(0). Clearly ~(0) is 

an 6-measurable function of ~. Let 90 be a countable subfield of 9 which 

generates 9.  We say that a fiber ~ of (7 is a good fiber if there is a g ~ D such 

that Pe(o).~(A)= ~ ( A )  for each A E 9.  We set G equal to the union of good 

fibers. 

Let p~ be an initial measure, and set 7r = ~',. Let {p¢}¢~, be a disintegration of 

~r relative to ~?. 

(a) For each A E 9, Pe(o).e(A) is ~'-measurable in s c and equal ~r-almost 

surely to zre (A). 

PROOFOF (a). Suppose A E 9, P~,~(A) is E x ~?-measurable in (x, ¢) by (1) of 

Theorem 2.13. Since x = ~¢(0) is ~?-measurable in ~, P~(o).e(A) is ~?-measurable in 

s e. Suppose E E (7. Then 

--S 
=y 
:] 
:L 

~'(A n C) 

f P, (An C)tz (dx) 

f (~c P"'(A)Px(d')) tz(dx) 

(fc P,,o,,,(a )Px(d,~)) ix(dx) 

(f  lc(,)Pe,o),e(a )P,(d,)) tz(dx ) 

lc (~ )e~o),~(A )Tr ( d~ ) 

P~to),e (A )¢r( d¢ ). 

The various steps are justified not only by the definition of ~-, {Tr,}, {Px.¢} and 

their properties but by the fact that Px ({s e : se(0) = x}) = P, ({f : f(0) = x}). This 

property, called normality ([1], page 30), is part of the assumption that 
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(D, ~,  ~,+, 17,, 0,, P,,) is a standard process ([1], page 45). Since C is an arbitrary 

member of ~7, the proof of (a) is complete. 

Clearly ~: is a good fiber iff P~o).~(D)= 1 and P~o).~(A) = P~o).~(A) for each 

A E ~0. We thus conclude from (a) that G E ~. 

Since @ is countably generated, it follows from (a) that, for rr-almost all ~, 

Peco).~(A) = ~re ( A )  for all A E ~. Corollary 4.3 shows that the set of fibers ~ for 

which 7r~ = 68 for some g ~ D has ~r-measure 1. Thus the set of ~'s with 

P~co).~(A) = 8s for some g has It-measure 1, which proves (1). If ~ is such a fiber, 

and if f ~ ~, it follows from Theorem 3.5 and Proposition 2.10 that there is a 

unique change of variable taking f into g, and we define ,/(f,. ) to be that change 

of variable. Thus y(f, t) is defined for all f G  G and t E [0,~), and (4) holds. 

For each f E  (3, let t3,(f) = p,,(g) if ¢r~ = 6~ for the fiber ~ containing ~7. It 

follows from Corollaries 4.2, 4.3, and 2.12 that /5~, is or-almost surely 6,~- 

measurable; in fact it is easy to deduce from Corollaries 4.2 and 4.3 that any 

~7.~-measurable version of E=(p, I ~7~) is zr-almost surely equal to t3,. Since 

f °  7(f," ) = g, it follows from part (a) of Lemma 3.4 that y(f, tS~ (f)) = p,~ (f)  for 

(b) For each s and t, 

(4.2) 
- -  ( {v,----t}= n u u o , < t +  

1 ( / , i )  = m ~ = 

(this equality assumed to hold modulo a rr-null set). 

PROOFOF (b). Suppose first that f E G, and that y(f, s) =< t. Fix n. Since 7if ," ) 

is strictly increasing and continuous, there is an m with y(f ,  s + 1 /m)  < t + 1/n. 

Since the p, 's  are dense in [0,oo) (by 3.2(d)), there is an ( l , i )  with f3, f f ) E  

[s, s + 1/m) .  Then 

p, ( f )  = V(#,, (f)) =< 7(f ,s  + 1/m)<= t + 1/m. 

Since n is arbitrary, f belongs to the right hand side of (4.2). 

Suppose f belongs to the right hand side of (4.2), and that f E G. Fix n. There 

is an m and an (1, i) for which s < #, (f)  < s + i /m ,  and pt, (f)  <-- t + 1/n. Then 

T0e, S) ~ T(f,/~, (f)) = p,, (f) ~ t +  I/r/. 

Since this holds for all n, yff,  s)=< t. Thus the intersections of the two sides of 

(4.2) with G are identical. Since r r ( G ) =  1, (4.2) holds modulo a zr-null set. 

We now establish property (2). The set {s <-~, < s + 1/m, p, < t + 1/n} is 
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or-almost surely equal to {s <= Zz~ <= s + 1/m, Is~ <= t + 1/n} where Zt~ is an 

~7t,-measurable version of E,~ (p~, I ~Tt,). But {s <= Z** <= s + 1/m } ~ ~'** C ~o,,, so 

{s <- Z~, <= s + 1/m } n (p,, <= t + 1/n} E So,+1/.. 

Since {s <= Zt, <= s + 1/m, p~ <= t + 1/n} is non-increasing in n for fixed (l, i) and 

m ,  

N U U 
n = l  m = l  ( / , i )  

{s <= Zt, <- s + 1/m, p~, <- t + 1/n} = 

= n u u { s<=Zt~<=s+l /m ,p~<=t+l /n}  
n = N  m = l  ( t , i )  

for any N, hence belongs to SO,+1:N for each N, hence to SO,+. It follows from (b) 

that {ys --< t} belongs to the ~r-completion of SO,*. 

We now prove (3). We shall establish that, for each value of s, both 1' and O J  

belong to good fibers, and that if ~'~ = 6,, where ~" is the fiber to which .( belongs, 

then 7r~, = 60,g, where ~s is the fiber to which 0,, belongs. It then will follow that 

y ( O J ,  • ) is the change of variable which takes O J  into O~g. This (unique) change 

of variable is easily seen to be the map t---> y(f, s + t ) - y ( f ,  s). The proof that 

the translate of f by 0~, corresponds to the translate of g by s is somewhat 

involved, but is basically an application of the strong Markov property. 

Fix s E [0,oo). Let 4> denote 0~. Let /z~ be the distribution of rb, that is, 

~, (E) = 0r({f : f ( y ( f ,  s)) ~ E}). Since y~ is a So,+-stopping time by virtue of (2), a 
fairly routine argument using the strong Markov property shows that or o 4)-1= 

or,, (see the proof of corollary 8.5 on page 39 of [1]). 

(c) If Z is a bounded, So-measurable function on D, then 

(4.3) E~ (Zo th IG)=  E~o~,-~(ZI~?)o ch 7r-a.s. 

PROOF OF (C). For each O ~ ~7, ~ - ' ( O )  = {f : [  E G, 4'(f) E ~7}, and 4'-~(6) = 

{4' '(0) : 0 ~ ~}. Since G is a union of fibers of 6 with 7r(G) = 1, the identity 

(4.4) E,(Zocklck-~(( f f ) )  = E=o,- , (Z I (ff)o 4) , 

well known if 4> is S0-measurable and defined on all of G, holds for ~b = y~. Thus 

it suffices to prove 

(4.5) E= (Zo ~ I ~) = E,, (Zo 6 1 6- '(G)). 

Let ~ = ~ ,  v 4~-'(~). By virtue of Lemma 3.6, ~ C SO~, v 4~-~(~). We now show 

that E = ( Z o c k l c k - l ( ~ 7 ) ) = E  ( Z ° c k l ~ ) .  Relative to ~r, SO~, is conditionally 

independent of SO~, given ~ .  But ~ is ~--a.s. 4,-l(~)-measurable and 4 ' - ' (6 )C 
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~-~, (modulo 7r), so ~ ,  is conditionally independent of @~, given r/v, v ~b-1(~7)= 
&-l(tT) by virtue of part (a) of Lemma 2.5. Since Z o q5 is rr-a.s. ~zmeasu rah le ,  

it follows that 

We now show that q~-l(0') C ~7 (modulo zr). Suppose that ~: C G. By (4) there is 

a g E ~ such that f ° 7 ( f ,  ")= g for all f E  ~:. Fix f E  ~:, and denote Y(f, ") by tr. 

For each tE[0,c¢), let f ~ ( t ) = ( O J ) ( t ) - f ( 7 , ) ,  g , ( t )=(Osg) ( t ) -g ( s ) ,  and 

o', (t) = y(.f, t + s ) -  y(s). In the proof of Lemma 3.4, we observed that f~ °ars = 

g~. Since f (Y(f ,  s)) = g(s), it follows that O,s f o cr, = O,g. It follows from Theorem 

3.5 that O J  - 0,g(mod (7); hence if f, and f2 are both in ~:, O,,f~ = 0~/2(mod (7). 

This shows that for ~r-almost all fibers ~" of t~, ~-~(s r) is a union of fibers of ~7, 

which in turn shows that if 0 E G, ~b-~(0) is, modulo a 7r-null set, a union of fibers 

of ~7. Since ~b-~(G) is O-measurable, it follows from Corollary 2.12 that ~b-~(0) is 

in the 7r-completion of O ~. 

Since ~ D C D ~b-~((?), and since E ( Z o 4 ) 1 9 , ) =  E(Zoqb[cr-X(t~)), it follows 

that E(Zoqb [~7) = E ( Z o &  [ q b-l(0')), and (c) is proved. 

The fact that two members of the same fiber ~: C G are equivalent modulo (7 

implies that the direct image ~b(£) of ~: under qb is a subset of some fiber of ~7. We 

denote this fiber by ~b*(~). 

Let {~} be a disintegration of ~-oqb -~ relative to ~7. For each bounded, 

@-measurable Z on D, we use the disintegrations {rr~} and {Try} to produce 

G-measurable versions of E,~ (Z o ~b [ t~) and E ~o,-~(Z [ ~?) respectively. Then we 

conclude from (c) that the set of £'s in G for which 

(4.6) f Zo d ,=f ZdTr~,.to 

is of ~--measure 1. Indeed, if ~ is a countable collection of such Z's ,  the set of 

~'s in G for which (4.6) holds for each Z E ~ is of ~'-measure 1. 

Since rro ~b-' ---- rG. , rr(4~-~(G))= 1 by (1), so rr(G t3 ~b-~(G)) = 1. Note that if 

E G A th- '(G), then s ¢ E G and th*(~:) C G. By (4), for ~r-almost all ~, rr~ is a 

point mass concentrating on ~. It also follows from (4) that rr[ is a point mass on 

for rr o ~-Lalmost  all £; that is, rr~.(~)is a point mass concentrating on ~b*(~:) for 

7r-almost all s ¢. Thus the set H of fibers s ~ for which s ~ E G, ~*(~)E  G, ~r~ is a 

point mass on s ~ and 7r,.(o is such point mass on ~ *(~:), and for which (4.6) holds 

for each Z E ~, has ~r-measure 1. Suppose ~ E H. Then 7r~ = ~, where (by virtue 

of (4)) for each f E £, 7 ( f , ' )  is a change of variable taking f into g, and 

~r~.(~) = 6,,, where, for each f '  E th*(~), 7(f ' ,"  ) is a change of variable taking f '  
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into g'. By (4.6), we have Z(4,(g)) = Z(g') for all Z ~ ~ ;  and ~ can be chosen 

rich enough to ensure that this last implies that g ' =  4,(g). Now, if [ ~  ~, 

4,(/) E 4,*(~), and so y(4 , ( / ) , . )  is a change of variable which takes 4,(/) into 

4,(g). But 4 ' ( / )=  OJ, and 4 , (g)= 0~,g = Osg (this last because y(g ,s)= s). But 

we observed in the argument leading to (d) that the change of variable taking 0,,[ 

to O,g is or*, where or*(t) = or(t + s) - or(t) = y(/, t + s ) -  y(/, t). (We emphasize 

once more that the phraseology, "the change of variable" is justified by 

Proposition 2.10.) We have shown that for a fixed s, there is a union of fibers H 

with 7r(H) = 1 such that, if f E H, y(O~J, t) = y(]:, t + s) - y(f, t) for all t. This 

establishes property (3), completing the proof of the theorem. 

05. The equivalence under time changes of processes with the same hitting 

probabilities 

Suppose that X = (1~, ~¢, alL, X,, P) and .~ = ((l, ~t, a~t,, X,, 15) are quasi-left- 

continuous stochastic processes with right continuous or-fields, whose paths have 
no intervals of constancy, and which have identical state-dependent hitting 

probabilities in the sense of [2], definition 2.6. We extend previous notational 

conventions from X to X. In particular the symbol .~ will be used to denote not 

only the process (~, ~/, ~,,  .,~,,/5) but also the map of fi  into D given by setting 

X(o3) equal to the function whose value at t is X, (o5). We use ~ to denote the 

distribution of the process X = (l~, ~t, ~,,  ~,, t5); that is, ~" = 15 o.~-1. 

5.1. LEM~tA. If  X and X have the same state-dependent hitting probabilities 
and inital distributions, then the restrictions of Ir and (r to ~7 are identical. 

PROOF. In definition 3.13 of [2] there is defined a sub-o--field of ~,  denoted 

there by G. We denote it by G*, as 6 is used for a different purpose here. It is 

shown in [2] that if f and g are cadlag functions without intervals of constancy 
and if f and g are in the same fiber of 6% then there is a change of variable or 

such that f o o- = g (lemma 5.2 of [2]). It is easy to see that the converse holds: i f /  

and g are in Do, and there is a change of variable ~r such that g = f o or, then [ 

and g are in the same fiber of ~7". It follows from Theorem 3.5 that ~ and ~7", 

considered as o" fields over Do, have the same fibers. Both are countably 

generated, so Blackwell's theorem implies that ~ = ~7". It is shown in [2], 

however, that the restrictions of 7r and 7r to 8"  are identical (theorem 3.14). 

5.2. THEOREM. Let X and f~ be quasi-left-continuous processes, whose sample 
paths are right continuous, continuous from the left, and have no intervals o[ 

constancy. Suppose that they have the same state-dependent hitting probabilities, 
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and the same initial distribution. Suppose also that )~ is a Markov process with a 
transition [unction P, (x, E)  which induces a standard process on D. Then there is a 

continuous time change {z,, t _-> 0} for X such that ([l, s#, Yg,., X~,, P) is a Markov 
process with transition [unction P, (x, E ), where, for each t, Y(, is the sub-tr-field of 

sg generated by all X,, with 0 <= s <-_ t. I f  X is Markov, then (fl, sg, :g~,, X,,, P) is a 

Markov process with transition [unction/5, (x, E).  

PROOF. A s s u m e  the hypothesis .  Then  X satisfies the  hypothes is  of T h e o r e m  

4.4. Le t  /z be  the initial distr ibution c o m m o n  to X and )~. Then  ~" = / 5  o ~ - 1  is 

the measu re  on (D, 9 )  de t e rmined  b y / x  and the  transi t ion func t ion /5(x ,  E ) .  As  

before ,  7r = P o X  1. Let ~(f, t) be  the funct ion descr ibed in T h e o r e m  4.4. (We 

use " ( ~ "  ins tead of G, and  rep lace  7r by ~" and  7re by ~ respect ively.)  W e  define 

{z,, t >-_ 0} on X by sett ing z,(to)= ~,(X(to), t) for  each to for  which X ( t o ) E  G. 

Since t~ is a union of fibers of ~? with ~ - m e a s u r e  1, and since the restr ict ions of 7r 

and ~" to ~? are identical  by vir tue of L e m m a  5.1, G has 7r-measure  1, so the 

domain  X - ' ( G )  of z, has P - m e a s u r e  1. Since 

{~-, _-< s}  = {to : q ( x ( o ~ ) ,  t)  _-< s } X - ' ( q ,  <= s) ~ x -1 (~ : )  c ~ , ,  

and since cont inui ty  in t of 7, is a consequence  of the  cor responding  p rope r ty  for  

~,,, {~-,, t => 0} is indeed a con t inuous  t ime change  for  X. 

We  abuse  nota t ion  by using "~ to deno te  the  m a p  f rom (~ into D defined by 

['~(f)] (t) = f(,~(f, t)), t _-> 0, f E 0 .  It is easy to see that  the dis tr ibut ion of {X,,} is 

equal  to ~r o 37 -1. Let  {Tre} and { ~ }  be dis integrat ions relat ive to 6 of ~ and  ,5" 

respect ively.  By T h e o r e m  4.4, for  7i--almost all f ibers s c of ~?, there  is a ~ such that  

~-e = 6g and 3~(f) = g for  each f E ~c. Since 7r = "5" on ~7, the 7r-measure  of this set 

of fibers is the same  as its ,5--measure, namely  1. Let  A E ~?. For  7r-almost all of 

these fibers, ~-~ is a probabi l i ty  measure  concent ra t ing  all its mass  on so: then if 

z?~ = 6~ with ~ (f) = ~, 

7r~({f : -~(f) ~ A})  = 7 r e ( { f : f E ~ , ' ~ ( f ) ~ A } )  = 6g(A)  = ~ e ( A ) .  

Using once more  the identi ty of 7r and # on C, it follows that  ~ ( ~ ( f ) C  A ) =  

~ ( A ) .  Thus  ~- o 3~ -~ = ~-. In o ther  words, {X~,, t => 0} and {)(,, t => 0} have the same  

f ini te-dimensional  distr ibutions.  

Suppose  s->_0, that  0 - < s ~ < . - . < s , , _ - < s ,  that E, ExZ, i =  1 , . . . , n ,  and let 

C = { t o : X ~ ,  E E h . . . , X ~ , , E E , , } .  Let t_>O, and E E E .  Then  
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P({X,,÷, • E} ¢3 C) = • r({*7,+, • E, .7,, • E l , ' "  ", *7,. • E,}) 

• E, .7,, • E , , . . . ,  .7,. • E.}) 

.k({*7,+, • E, r/,, • E , , . . . ,  *7,. • E.}) 

f{tllt l ~E1..... ~.lsn ~ En } 

f{,ll.tl 1~ El..... tl~n E En } 

= fc #,(x,,, B)ae. 

/5 (.7,, E)d6" 

#, (.7,., E)a - 

5.3. COROLLARY. Suppose 

It follows that 

(5.2) P(X,,÷, E E I ~',) = P' (X,., E)  P-a.s. 

For any bounded X-measurable function .f on S, let (P, f ) (x)= Sf(y)P,(x, dy), 
x E S. Suppose f is a bounded continuous function on S. Then (P,/)(*7,) is 
~?-almost surely continuous in s by Theorem 2.8 (applied directly to the path 

process induced on D by {,6,(x,E)}). This implies that (P,/) (*7,, ) is ,r-almost 

surely continuous in s, hence that (P,f)(X,,) is P-almost surely continuous in s. A 

routine sort of argument, similar to but simpler than the proof of theorem 8.11 

on page 41 of [1], now shows that (fl, M, ~(,*, X,,, P) is a Markov process having 

{P,(x, E)} as transition function. 
Suppose X = (fl, M, alL, X,  P)  is Markov. It follows from the definition of 

{~',, t _-> 0} and (4.1) that .r,+, - z, E X - I (~+)C  ~;+,,. It follows from Corollary 2.4 

that 

(5.3) P(X,,÷, E E I dL,) = P(X,,+, E E l X.~,) P-a.s. 

Since X,, is ~,-measurable,  it follows from (5.2) that 

(5.4) P(X~.. ,E E IX, , )= P,(X, , ,E) P-a.s. 

Thus we have, for each s, t • [0, 00) and E • X, 

(5.6) P (X, .+ , •  E [ ./L,) = P, (X.,, E).  

An argument identical to the one given above, using Theorem 2.8, enables us to 
conclude that (fl, .a,.kt,, ,X,,,P) is a Markov process having P , (x ,E)  as a 

transition function. This completes the proof of the theorem. 



Vol. 33, 1979 A PROPERTY OF MARKOV PROCESSES 267 

X=(I),.,ld, M,,X,,O,,P*) and ~ = ( ~ , j ~ , ~ , , ) ~ , , ~ , , p x )  

are Markov processes, with state space (S, ~,), in the sense of Blumenthal and 

Getoor. Suppose that both X and f~ are standard, that the sample paths of both 

have no intervals of constancy, and that they have the same hitting distributions 

(see page 234 of [1]). Then there is a time change {r,, t >-_ O} for X such that 
X = (I),M,.d~,,X.,, O,,,P*) is a strong Markov process with the same transition 

function as fL Furthermore, {r,, t _-> O} is the inverse of a continuous additive 

functional on X. 

PROOF. Since )~ is standard, P~(D)= 1 for any initial distribution /.t. The 

transition function of .~ therefore induces a standard process on D. Now apply 

Theorem 4.4 to obtain the function q(f, t) described there, and set r ,( to)= 

q(X(~0),t), where X(to) is the member of D described by the sample path 

{Xs(to), s -> 0}. Let /z be any initial measure. Let rr, and ~'~ be the measures 

induced on (D, 9 )  by ~ and the transition functions of X and .~ respectively. 

The set G of f ' s  for which q (f,-) is defined has ~-~ measure 1; since (~ is a union 

of fibers of ~ it has 1r~-measure 1 by virtue of Lemma 5.1, which is applicable 

since the stochastic processes (D, 9, ~,*, ~?,, ~ , )  and (D, 9,  ~,*, */,, ~',) have the 

same state-dependent hitting probabilities. Now, rr~ = P, oX -1, where P,  = 

f px( .  )/z (dx) (see page 25 of [1]). Therefore X-I(t~) has P~-measure 1. Since/z 

is arbitrary, 7,(to) is defined (for all t _-> 0) almost surely in to; here we are using 

"almost surely" in the sense of definition 5.7 on page 27 of [1]. For each x ~ S, 

let ~rx = ~r~ and ~'~ = ~',. with ~ = 8~. To show that .~ is strong Markov with the 

same transition function as X amounts to showing that, for each x E S, the 
stochastic process (II, M,M., ,X. , ,W) is a Markov process (in the sense of 

Definition 2.2) with the same transition function as the stochastic process 

(1~, ~ .,~, ..~',/~*). But this follows from Theorem 5.2. 

We complete the proof by showing that {r,, t >- 0} is the inverse of an additive 

functional for X. (Although the additive functional will be defined almost surely, 

the set of o ' s  on which it is defined may not include the entire domain of {r,}.) 

We begin by applying Theorem 4.4 to X (not ..Y as in the first part of the proof) 

to obtain a function 3'(f, t) and a G C D  satisfying the properties stated in the 

theorem. Suppose ~: C G n 0 .  Then ~ contains a g, and a 3'(f, t) such that 

f o y ( f , . ) =  g~ and f o ~ ( f , . ) =  g~ for each f E  ~. We set a ( g o ' ) =  y(g~,'). 
Suppose/z is any initial measure. Let ~r = rr.. Since ~r~ = t~8, for rr-almost all 

fibers ~:, 1r({g~ : ~: C G t') G}) = 1. 
Since ge ° q(g~, ") = g~, and g~ o ~(~,  • ) = go a(ge," ) = 3'(g~, ")-1, which shows 

that 3' is the inverse of a on the domain {g~ : ~ C G O (~} of a. 
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We now show that for each s, t, and initial measure IX, {g , :~  C G n 0 ,  

a(ge, t)<= s} belongs to the completion of @~ under zr~. Since 

ct(g~,t)<=s ¢~ 3~(g~,t)-l<=s ¢=> t<=3,(g~,s), 

and since 

{f  : t <= y ( f , s ) } =  {f : y ( f , s ) < t } C  ~, C ~,+, U{g~ : a(ge, t)<=s} 

is the intersection of a m em ber  of ~,* with the set {g~ : ~ C  G n G}, which has 

7r.-measure 1. 

What  remains is to show that, for each s _-> 0 and initial measure Ix, 

(5.5) as+, = as + a, o 0. ~-~-almost surely. 

Earlier we showed that if ~: E G then 0 ~  is a subset of a fiber ~ of ~7, and for 

zr. -almost all s c C G, ~:s C G and ge. = O,ge. If we replace X by ~" in the argument 

used to establish this, we see that for 7?.-almost all ~: C 0 ,  hence for z?.-almost 

all ~: C G n G, ~s c G and g~, = Osge,. Since ~-~ = 77~ on ~, it follows that for 

7r,-almost all s c C G n 0 ,  ~:, C G n G, g~, = Osg~, and g~, = 0~e. For such an ~, 

a ( g  t, s + t) = ~/(ge, s + t) = 3'(g~, s) + 3/(0,,~,~, t) = a(g~, s) + ~,(0~,~, t). 

But a(O~g~, t) = "y(O,g~, t) = y(~,~, s + t ) -  y ( ~ ,  s). Thus a(O,g~, t) = "y(O~.¢o t), 
and so a(g~, s + t )=  a(g~, s )+ ot(Osg~, t). This proves (5.5). 

If we now define A (to, t) = a(X( to ) ,  t) for all to ~ 12 for which X(to)  E G O G, 
it follows from the properties just now demonstrated to hold for a that A is a 

continuous additive functional for X of which {r,, t => 0} is almost surely the 

inverse. (For the definition of additive functional, see page 148 of [1], where the 

multiplicative functional M figuring in the definition given there is taken to be 

identically equal to 1.) This completes the proof of the theorem. 

§6. Theorem 5.2 contains the theorem of Biumenthal,  Getoor ,  and McKean 

([1], page 234) on the equivalence under t ime change of two standard processes 

with identical hitting distributions m in the case in which both processes have 

identically infinite killing times and the sample paths of both have no intervals of 

constancy. As we mentioned earlier, we intend to consider the case of Markov 

processes with holding states ([1], page 91) in a paper  now under preparation.  

In [3], Dubins and Schwartz showed that a continuous fair process, whose 

sample paths have no intervals of constancy, can be t ime-changed into Brownian 

motion. It is not hard to see that a fair process is a stochastic process with 

s tate-dependent  hitting probabilities identical to those of the Brownian motion 

process. Our  Theorem 5.2 thus includes their result as well. 
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A d d e d  in proof.  W e  h a v e  r e c e n t l y  ([8]) s h a r p e n e d  no t  on ly  t h e  r e su l t s  p r o v e d  

in this  p a p e r  b u t  a lso  t h e  o n e s  s t a t e d  in t h e  i n t r o d u c t i o n .  W e  r e f e r  t h e  r e a d e r  to  

t h e  r e s e a r c h  a n n o u n c e m e n t  [9]. 
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